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Abstract: The two main sources of caffeine in the adult diet in North America are coffee (60 to 75%) and tea (15 to 30%),
although caffeinated soft drinks and chocolate are primary sources of caffeine in kids’ diets. An algorithm can generate
topological indices, which are mathematical representations of molecules that can be applied to their structure. The degree-
based topological indices for the aforementioned antiviral medications have been examined in the current work using a
polynomial technique. Caffeine is a significant component in various medications, with different prescription (30 to 100
milligrams per tablet), over-the-counter (15 to 200 milligrams per tablet or pill), and capsule dosages. Topological indices
are employed to describe the biological and physico-chemical properties of diverse chemical compounds. The adult acute
fatal dosage of caffeine has been calculated to be 10 grams per person. While 6.5 grams of caffeine have been reported to be
fatal, there are cases of patients who purportedly consumed 24 grams of caffeine and survived. We have computed various
polynomials including Hosoya and Harary, distance-based topological indices, and other important degree-based topological
indices.
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I. INTRODUCTION

Pharmaceuticals and personal care products (PPCPs), food
additives, and other consumer products have recently been
identified as new pollutants resulting from human activity
(Sophia and Lima, 2018). Due to potential risks to the en-
vironment and public health, pharmaceutical emerging con-
taminants (PECs) have become a significant concern, with
caffeine being one of the most prevalent PECs found in var-
ious aquatic environments worldwide, including wastewater,
rivers, groundwater, oceans, and even drinking water. It is a
psycho-stimulant that is widely consumed [1].

Coffee is the primary dietary source of caffeine in adult
diets in some European countries such as Sweden, Denmark,
Finland, and Switzerland. Brewed coffee contains caffeine
in the range of 56 to 100 milligrams per 100 milliliters.
Tea and instant coffee follow with caffeine content ranging
from 20 to 73 milligrams per 100 milliliters, and similar
amounts are found in cola beverages (9-19 milligrams per
100 milliliters). Chocolate and cocoa products (e.g., choco-
late candies) also contribute significantly to caffeine intake,
with amounts around 3-5 milligrams per 100 grams. More-
over, caffeine is present in both prescription medications (30-
100 milligrams per tablet) and non-prescription options (15

to 200 milligrams per tablet, pill, or capsule) [2]–[4].
Reported values for typical daily caffeine consumption

from all sources in Canada range from approximately 2.4
mg/kg body weight for adults to 1.1 mg/kg for children
aged 5 to 18 [5]. In a study involving adults (481 males and
females, ages 30 to 75) in southern Ontario, Canada, caffeine
consumption ranged from 288 to 426 mg per day, equivalent
to 4.5 to 6.5 mg/kg body weight in a 65-kilogram individual.

Average daily caffeine intake in the general population is
around 3 mg/kg body weight in the USA, 4 mg/kg in the
UK, and 7 mg/kg in Denmark. Advanced consumers may
consume doses ranging from 5 to 15 mg/kg body weight. The
recommended daily caffeine intake for children varies, with
values of 1 mg/kg body weight in the USA, 3 mg/kg in the
UK, and 2.5 mg/kg in Denmark [5].

Caffeine’s elimination half-life ranges from 3 to 7 hours
and is influenced by factors such as sex, age, oral contra-
ceptive use, pregnancy, and smoking. Women tend to have
shorter half-lives than men (20-30% shorter), and newborns
have a half-life of 50-100 hours, gradually approaching that
of adults by six months of age. The half-life is higher in
females using oral contraceptives compared to ovulatory
females. Pregnancy also affects caffeine metabolism, with
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the half-life increasing from 4 hours in the first trimester to
18 hours in the third trimester. Cigarette smoking accelerates
caffeine excretion by nearly threefold [2], [6].

Caffeine is rapidly absorbed into the bloodstream through
the gastrointestinal tract. Blood levels peak within 1 to 1.5
hours after consumption. It crosses the blood-brain barrier,
placenta, and breast milk, and has been detected in semen.
Caffeine metabolism primarily occurs in the liver, resulting
in the formation of metabolites such as 1-methylxanthine and
1-methyluric acid. Only 1 to 5% of consumed caffeine is ex-
creted unchanged in urine. Caffeine metabolism in newborns
is impaired, with around 85% excreted. While cases of death
from excessive caffeine use are rare, an adult’s acute fatal
dose has been estimated at 10 grams per person. There have
been reports of survival even after consuming as much as 24
grams of caffeine [7].

Consider a simple graph G = (V,E), where
the Hosoya polynomial is defined as H(ξ, λ) =∑

(u0,u1)⊆V (ξ) λ
d(u0,u1), and d(u0, u1) denotes the distance

between vertices u0 and u1. Cactus graphs are characterized
by not having edges that span more than one cycle, making
them connected. In a study [8], the Hosoya polynomial of
several cactus chains was computed, leading to the determi-
nation of WI and hyper-WI for these chains.

Topological indices are molecular descriptors that capture
various aspects of a molecule’s structure using graph the-
ory. The WI, an early topological index, was introduced by
Wiener in 1947 as the "path number." The Hosoya polyno-
mial is central to finding the WI. In another study [9], the
Hosoya and Harary polynomials were computed for different
network structures, including triangular oxide and silicate
networks, along with various distance-based topological in-
dices.

The Hosoya polynomial, introduced by Hosoya in 1988,
has the remarkable ability to recover nearly all distance-
based topological indices. In a study [10], the authors provide
the general closed form of the Hosoya polynomial for a
linearly concatenated benzene molecule. They show that the
Hosoya polynomial can be used to predict various indices for
compounds containing Bn, providing insights into pharma-
cological, chemical, and physical characteristics.

The paper also introduces topological indices, particularly
the Hosoya polynomial, as a mathematical tool to character-
ize molecular structures in chemical compounds.

II. BASIC NOTIONS AND DEFINITIONS
The Hosoya polynomial of a connected graph ξ is defined as,

H(ξ, λ) =
∑

(u0,u1)⊆V (ξ)

λd(u0,u1),

where the vertices u and v’s distance is indicated by the
symbol d(u, v) [11].

The Harary polynomial of a connected graph ξ is defined
as [12],

h(ξ, λ) =
∑

(u0,u1)⊆V (ξ)

1

d(u0, u1)
λ(u0,u1).

The sum of the distances between all pairs of vertices in a
connected graph ξ is the Wiener index. The mathematical
formula for the Wiener index is [13],

W (ξ) =
∑

(u0,u1)⊆V (ξ)

d(u0, u1).

The hyper-Wiener index WW (ξ) is defined as,

WW (ξ) =
1

2

∑
(u0,u1)⊆V (ξ)

d(u0, u1)+
1

2

∑
(u0,u1)⊆V (ξ)

d2(u0, u1).

Note that the first derivative of the Hosoya polynomial at λ =
1 is equal to the Wiener index [14],

W (ξ) = (H(ξ, λ))′|λ=1.

Also, we have the following relation,

WW (ξ) =
1

2
(λH(ξ, λ))′′|λ=1.

In 1972, Gutman and Trinajstic [15] introduced the first
Zagreb and second Zagreb indices as,

M1(℘) =
∑

mn∈E(℘)

(dm + dn),

and
M2(℘) =

∑
mn∈E(℘)

(dm × dn).

The hyper-Zagreb index is defined as,

HM(℘) =
∑

mn∈E(℘)

(dm + dn)
2.

The redefined 3rd Zagreb index is defined as,

ReZG3(ξ) =
∑

mn∈E(ξ)

(dmdn)(dm + dn).

The forgotten topological index is defined as,

F (ξ) =
∑

gh∈E(ξ)

(d2g + d2h).

The first and second Gourava indices are defined as,

GO1(ξ) =
∑

gh∈E(ξ)

[(dg + dh) + (dg × dh)],

and
GO2(ξ) =

∑
gh∈E(ξ)

[(dg + dh)(dg × dh)].

The first and second hyper Gourava indices are defined as,

HGO1(ξ) =
∑

gh∈E(ξ)

[(dg + dh) + (dg × dh)]
2,

and

HGO2(ξ) =
∑

gh∈E(ξ)

[(dg + dh)(dg × dh)]
2.

The general redefined Zagreb index is defined as,

ReZ(δ1,δ2)(ξ) =
∑

m,n∈E(ξ)

[dm × dn]
δ1 [dm + dn]

δ2 ,
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where δ1 and δ2 are real numbers. Opting δ1=0 and δ2 = δ1,
δ2 ̸= 0 give rise to the general sum-connectivity index that is
defined as,

χδ1(ξ) =
∑

mn∈E(ξ)

[dm + dn]
δ1 .

Whereas for δ1 ̸= 0 and δ2 = 0, the general Randic-
connectivity index Rδ1 is obtained which is defined as,

Rδ1(ξ) =
∑

mn∈E(G)

[dm × dn]
δ1 .

The first Zagreb polynomial and second Zagreb polynomial
are defined as,

M1(ξ, λ) =
∑

vw∈E(ξ)

λdv+dw ,

and
M2(ξ, λ) =

∑
vw∈E(ξ)

λdvdw .

The Hyper-Zagreb polynomial is defined as,

HM(ξ, λ) =
∑

vw∈E(ξ)

λ[dv+dw]2 .

General redefined Zagreb Polynomial is defined as,

ReZG(δ1,δ2)(ξ, λ) =
∑

vw∈E(ξ)

λ[dv×dw]δ1 [dv+dw]δ2 .

The redefined 3rd Zagreb polynomial is defined as,

ReZG3(ξ, λ) =
∑

vw∈E(ξ)

λ(dv×dw)(dv+dw).

The general sum-connectivity polynomial is defined as,

χδ1(ξ, λ) =
∑

vw∈E(ξ)

λ[dv+dw]δ1 .

The general Randic-connectivity polynomial is defined as,

Rδ1(ξ, λ) =
∑

vw∈ξ(G)

λ[dv×dw]δ1 .

III. RESULTS AND DISCUSSIONS
In this section, we presented some important results related
to Caffeine chemical structure like Hosoya and Harary poly-
nomials and some useful topological indices. The graphical
representation of chemical structure of Caffeine is presented
in Figure 1 and the vertex partition of Caffeine chemical
structure is given in Table 1. Moreover, the edge partition
of Caffeine chemical structure is given in Table 2. From the

TABLE 1: The vertex partition of Caffeine chemical structure

dg where g ∈ V (ξ) vertices
1 10n+ 2
2 2n− 1
3 8n
4 3n

Figure 1 and Tables 1 and 2, we have following results for

FIGURE 1: Chemical structure of Caffeine

TABLE 2: The edge partition of Caffeine chemical structure

(dg , dh) where gh ∈ E(ξ) No. of edges
E1(1, 3) 2n+ 1
E2(1, 4) 8n+ 1
E3(2, 3) 3n− 1
E4(2, 4) n− 1
E5(3, 3) 8n
E6(3, 4) 3n

Caffeine chemical structure;
The Hosoya polynomial is,

H(ξ, λ) = 25λ+43λ2+46λ3+57λ4+42λ5+39λ6+24λ7.

The Harary polynomial is,

h(ξ) = 25λ+
1

2
43λ2+

1

3
46λ3+

1

4
57λ4+

1

5
42λ5+

1

6
39λ6+

1

7
24λ7.

The Wiener index is,

W (ξ) = 1089.

The Hyper-Wiener index is,

WW (ξ) = 3121.

Moreover, from Tables 1 and 2, the following results for the
Caffeine chemical structure can be obtained immediately,

1) The first Zagreb index: M1(℘) = 138n− 2.
2) The second Zagreb index: M2(℘) = 172n− 7.
3) The Hyper-Zagreb index: HM(℘) = 778n− 20.
4) The forgotten topological index: F (ξ) = 434n− 6.
5) The first gourava index: GO1(ξ) = 340n− 39.
6) The second gourava index: GO2(ξ) = 1006n− 46.
7) The first hyper-gourava index: HGO1(ξ) = 4188n −

187.
8) The second hyper-gourava index: HGO2(ξ) =

52988n− 2660.
9) Redefined general Zagreb index: ReZG(δ1,δ2) =

(2n + 1)[3]δ1 [4]δ2 + (8n + 1)[4]δ1 [5]δ2 + (3n −
1)[6]δ1 [5]δ2 + (n − 1)[8]δ1 [6]δ2 + (8n)[9]δ1 [6]δ2 +
(3n)[12]δ1 [7]δ2 .

10) Redefined 3rd Zagreb index: ReZG3 = 1006n− 46.
11) General sum-connectivity index: χδ1(ξ) = (2n +

1)[4]δ1 +(8n+1)[5]δ1 +(11n)[5]δ1 +(9n− 1)[6]δ1 +
3n[7]δ1 .
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12) General Randic-connectivity index: Rδ1(ξ) = (2n +
1)[3]δ1 +(8n+1)[4]δ1 +(3n−1)[6]δ1 +(n−1)[8]δ1 +
(8n)[9]δ1 + (3n)[12]δ1 .

Similarly, the following polynomials for the Caffeine
chemical structure can be calculated,

1) First Zagreb polynomial: M1(ξ, λ) = n(2λ4+11λ5+
9λ6 + 3λ7) + λ4 − λ6.

2) Second Zagreb polynomial: M2(ξ, λ) = n(2λ3+8λ4+
3λ6 + λ8 + 8λ9 + 3λ12) + λ3 + λ4 − λ6 − λ8.

3) Hyper-Zagreb polynomial: HM(ξ, λ) = n(2λ16 +
11λ25 + 9λ36 + 3λ49) + λ16 − λ36.

4) Redefined 3rd Zagreb polynomial: ReZG3(ξ, λ) =
n(2λ12 + 8λ20 + 3λ30 + λ48 + 8λ54 + 3λ84) + λ12 +
λ20 − λ30 − λ48.

5) General sum-connectivity polynomial: χδ1(ξ, λ) =

n(2λ[4]δ1+11z[5]
δ1
+9λ[6]δ1+3λ[7]δ1 )+λ[4]δ1−λ[6]δ1 .

6) General Randic-connectivity polynomial: Rδ1(ξ, λ) =

n(2λ[3]δ1 + 8λ[4]δ1 + 3λ[6]δ1 + λ[8]δ1 + 8λ[9]δ1 +

3λ[12]δ1 ) + λ[3]δ1 + λ[4]δ1 − λ[6]δ1 − λ[8]δ1 .

IV. CONCLUSION
In this study, the topological features of the caffeine chem-
ical structure, which is present in various sources such as
kids’ products, chocolate, and medicines, are explored. The
ability of caffeine to cross the blood-brain barrier, traverse
the placenta, enter the foetus’ amniotic fluid and breast
milk, and undergo metabolism primarily in the liver is in-
vestigated in the research paper. Various distance-based and
degree-based topological indices are computed for caffeine’s
chemical structure. Hosoya polynomial, Harary polynomial,
and degree-based polynomials are assessed using graphical
representations. The resulting polynomial expressions are
used to calculate topological indices for each structure. This
research also examines degree-based topological indices for
antiviral medications, employing polynomial techniques. The
computed topological indices contribute to understanding
diverse biological and physicochemical features of chemical
compounds. The findings support positive assumptions in
chemical and pharmaceutical engineering presentations.
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